1. Evaluate the expression $\sec(\arctan\frac{2}{3})$ without using a calculator.

First handle inside of parenthesis:

$$P = \arctan \frac{2}{3}$$
$$\tan P = \tan \left(\arctan \frac{2}{3}\right)$$
$$\tan P = \frac{2}{3}$$
$$Quadrant I$$
$$and \tan = \frac{y}{x}$$
$$so \quad y = 2, x = 3$$
$$find \quad r$$
$$r = \sqrt{x^2 + y^2}$$
$$r = \sqrt{3^2 + 2^2}$$
$$r = \sqrt{9 + 4}$$
$$r = \sqrt{13}$$

Second handle outer trig function

$$\sec = \frac{r}{x}$$
$$\sec = \frac{\sqrt{13}}{3}$$

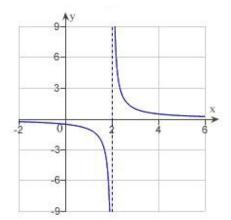
2. Solve:
$$3^{x-5} = 27$$

 $3^{x-5} = 27$
 $3^{x-5} = 3^{3}$
 $x-5=3$
 $x = 3+5$
 $x = 8$

Calculus I Chapter 1 and 2 Test Review Key

3. Complete the table and use the result to estimate the limit.

$$\lim_{x \to 3} \frac{x-3}{x^2 - 16x + 39}$$

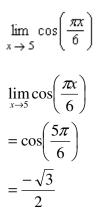

x	2.9	2.99	2.999	3.001	3.01	3.1
f(x)	-0.099	-0.0999	-0.1	-0.1	-0.1001	-0.101

so

answer = -0.1

4. Determine the following limit. (Hint: Use the graph to calculate the limit.)

lim	1		
$x \rightarrow 2$	x – 2		


answer = Does Not Exist

Calculus I Chapter 1 and 2 Test Review Key

5. Find the limit by algebraic evaluation.

$$\lim_{x \to 6} \frac{x}{x^2 + 8}$$
$$\lim_{x \to 6} \frac{x}{x^2 + 8}$$
$$= \frac{6}{6^2 + 8}$$
$$= \frac{6}{36 + 8}$$
$$= \frac{6}{44}$$
$$= \frac{3}{22}$$

6. Find the limit.

Calculus I Chapter 1 and 2 Test Review Key

7. Find the limit (if it exists) using algebraic techniques.

$$\lim_{x \to -8} \frac{x+8}{x^2 - 64}$$
$$\lim_{x \to -8} \frac{x+8}{x^2 - 64}$$
$$= \lim_{x \to -8} \frac{x+8}{(x+8)(x-8)}$$
$$= \lim_{x \to -8} \frac{1}{x-8}$$
$$= \frac{1}{-8-8}$$
$$= \frac{1}{-16}$$

8. Find the limit (if it exists) using the conjugate method.

$$\lim_{x \to 5} \frac{\sqrt{x+4}-3}{x-5}$$

$$\lim_{x \to 5} \frac{\sqrt{x+4}-3}{x-5}$$

$$= \lim_{x \to 5} \frac{\sqrt{x+4}-3}{x-5} \cdot \frac{\sqrt{x+4}+3}{\sqrt{x+4}+3}$$

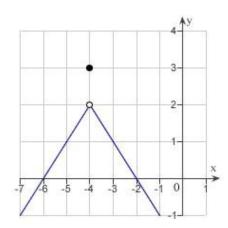
$$= \lim_{x \to 5} \frac{x+4-9}{(x-5)(\sqrt{x+4}+3)}$$

$$= \lim_{x \to 5} \frac{x-5}{(x-5)(\sqrt{x+4}+3)}$$

$$= \lim_{x \to 5} \frac{1}{\sqrt{5+4}+3}$$

$$= \frac{1}{\sqrt{5+4}+3}$$

$$= \frac{1}{\sqrt{9}+3}$$

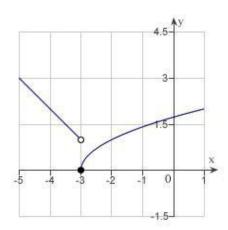

$$= \frac{1}{3+3}$$

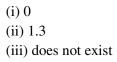
$$= \frac{1}{6}$$

Calculus I Chapter 1 and 2 Test Review Key

9. Use the graph as shown to determine the following limits, and discuss the continuity of the function at x = -4.

(i) $\lim_{x \to -4^+} f(x)$ (ii) $\lim_{x \to -4^-} f(x)$ (iii) $\lim_{x \to -4} f(x)$





discontinuous at x = -4

Calculus I Chapter 1 and 2 Test Review Key

- 10. Use the graph to determine the following limits, and discuss the continuity of the function at x = -3.
- (i) $\lim_{x \to -3^+} f(x)$ (ii) $\lim_{x \to -3^-} f(x)$ (iii) $\lim_{x \to -3} f(x)$

Discontinuous at x = -3

11. Find the limit (if it exists).

$$\lim_{x \to 11^{+}} \frac{11 - x}{x^{2} - 121}$$

$$\lim_{x \to 11^{+}} \frac{11 - x}{x^{2} - 121}$$

$$= \lim_{x \to 11^{+}} \frac{-x + 11}{(x + 11)(x - 11)}$$

$$= \lim_{x \to 11^{+}} \frac{-1(x - 11)}{(x + 11)(x - 11)}$$

$$= \lim_{x \to 11^{+}} \frac{-1}{x + 11}$$

$$= \frac{-1}{11 + 11}$$

$$= \frac{-1}{22}$$

Calculus I Chapter 1 and 2 Test Review Key

12. Discuss the continuity of the function $f(x) = \frac{x^2 - 4}{x - 2}$.

x-2=0 x=2so continuous: $(-\infty,2) \cup (2,\infty)$

13. Find the *x*-values (if any) at which the function $f(x) = \frac{x+2}{x^2+6x+8}$ is not continuous. Which of the discontinuities are removable?

 $f(x) = \frac{x+2}{x^2+6x+8}$ $f(x) = \frac{x+2}{(x+2)(x+4)}$ so: $x+2 = 0 \quad x+4 = 0$ $x = -2 \quad x = -4$

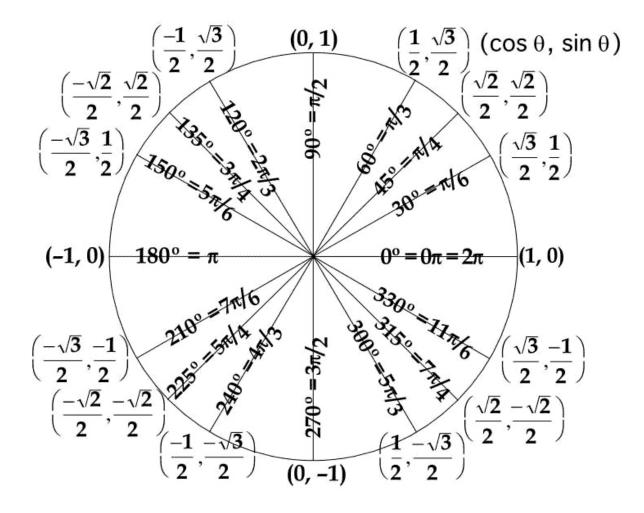
so discontinuous at -2, -4

$$f(x) = \frac{x+2}{(x+2)(x+4)}$$
$$f(x) = \frac{1}{x+4}$$

since x + 2 cancelled (was removed), x = -2 is a removable discontinuity

14. Find the limit.

$$\lim_{x \to 14^+} \frac{x-3}{x-14}$$


 $answer = \infty$

15. Find the limit.

$$\lim_{x \to 0^{-}} \left(x^2 - \frac{1}{x} \right)$$

 $answer = \infty$

Calculus I Chapter 1 and 2 Test Review Key

