Arc Length and Curvature

1. Sketch the plane curve and find its length over the given interval (Similar to p. 877 \#1-6)

$$
\boldsymbol{r}(t)=7 t \mathbf{i}-4 t \mathbf{j},[0,5]
$$

3. Sketch the space curve and find its length over the given interval
(Similar to p. 877 \#9-14)
$\boldsymbol{r}(t)=5 \mathbf{t i}+2 \mathbf{t} \mathbf{j}-3 \mathbf{t} \mathbf{k},[0,1]$

Arc Length of a Space Curve

If C is a smooth curve given by
$\mathbf{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathbf{i}+\mathrm{y}(\mathrm{t}) \mathbf{j}+\mathrm{z}(\mathrm{t}) \mathbf{k}$, on an interval $[\mathrm{a}, \mathrm{b}]$, then the arc length of C on the interval is

$$
\begin{gathered}
s=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t \\
s=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t
\end{gathered}
$$

2. Sketch the plane curve and find its length over the given interval (Similar to p. 877 \#1-6)

$$
\boldsymbol{r}(t)=4 \mathrm{t}^{2} \mathbf{i}-\mathrm{t}^{3} \mathbf{j},[0,2]
$$

4. Sketch the space curve and find its length over the given interval
(Similar to p. 877 \#9-14)
$\boldsymbol{r}(t)=<2 \mathrm{t}, 3 \cos (\mathrm{t}),-3 \sin (\mathrm{t})>,\left[0, \frac{\pi}{2}\right]$

Formulas for Curvature

If C is a smooth curve given by $r(t)$, then the curvature K of C at t is given by

$$
K=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

5. Find the curvature K of the plane curve at the given value of the parameter (Similar to p.878 \#25-30)

$$
\boldsymbol{r}(t)=5 \mathbf{t i}+3 \mathrm{t} \mathbf{j}, \mathrm{t}=1
$$

7. Find the curvature K of the plane curve at the given value of the parameter (Similar to p. 878 \#31-40)

$$
\boldsymbol{r}(t)=3 \mathbf{i}+4 \cos (\mathrm{t}) \mathbf{j}+4 \sin (\mathrm{t}) \mathbf{k}, \mathrm{t}=\pi
$$

8. Find the curvature K of the plane curve at the point P (Similar to p. 878 \#41-44)

$$
\boldsymbol{r}(t)=4 \mathbf{t i}+\mathrm{t}^{2} \mathbf{j},(4,1)
$$

