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Center of Mass and Moments of 

Inertia

Definition of Mass of a Planar Lamina 

of Variable Density

If ρ is a continuous density function on the 

lamina corresponding to a plane region R, then 

the mass m of the lamina is given by:
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1.  Find the mass of the lamina described by the 

inequalities, given that its density is ρ(x,y) = xy

(Hint: Some of the integrals are simpler in polar 

coordinates)

(Similar to p.1018 #1-4)

30,40 ≤≤≤≤ yx

2.  Find the mass of the lamina described by the 

inequalities, given that its density is ρ(x,y) = xy

(Hint: Some of the integrals are simpler in polar 

coordinates)

(Similar to p.1018 #1-4)
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Moments and Center of Mass of a 

Variable Density Planar Lamina

Let ρ is a continuous density function on the planar 
lamina R.  The moments of mass with respect to the 
x- and y-axes are:
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If m is the mass of the lamina, then the center of mass is:

If R represents a simple plane region rather than a lamina, 
the point �̅, �� is called the centroid of the region
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3.  Find the mass and center of mass of the 

lamina bounded by the graphs of the equations 

for the given density or densities (Hint: Some of 

the integrals are simpler in polar coordinates)

(Similar to p.1018 #11-22)

kyxyxy ==== ρ,4,0,
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4.  Find the mass and center of mass of the 

lamina bounded by the graphs of the equations 

for the given density or densities (Hint: Some of 

the integrals are simpler in polar coordinates)

(Similar to p.1018 #11-22)
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5.  Find the mass and center of mass of the 

lamina bounded by the graphs of the equations 

for the given density or densities (Hint: Some of 

the integrals are simpler in polar coordinates)

(Similar to p.1018 #11-22)

kxxxyey x ===== ρ,1,0,0,

6.  Find the mass and center of mass of the 

lamina bounded by the graphs of the equations 

for the given density or densities (Hint: Some of 

the integrals are simpler in polar coordinates)

(Similar to p.1018 #11-22)
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Moments of Inertia
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 :axis-yabout Gyration  of Radius

 :axis-about xGyration  of Radius

 :Inertia ofMoment Polar 

A ),(:axis-yabout  Inertia ofMoment 
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7.  Find the moment(s) of inertia and �̿ and ��.  

Assume that each lamina has a density of ρ = 1 

gram per square centimeter (These regions are 

common shapes used in engineering)

(Similar to p.1018 #27-32)

8.  Find the moment(s) of inertia and �̿ and ��.  

Assume that each lamina has a density of ρ = 1 

gram per square centimeter (These regions are 

common shapes used in engineering)

(Similar to p.1018 #27-32)
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9.  Find Ix, Iy, Io, �̿ and �� for the lamina bounded 

by the graphs of the equations.

(Similar to p.1018 #33-40)

kxxyxy =>=−= ρ,0,0,9 2


