Chain Rules for Functions of Several Variables

2. Find $\mathrm{dw} / \mathrm{dt}$ (a) by using the appropriate Chain Rule, and (b) by converting w to a function of t before differentiating (Similar to p.931 \#5-10)

$$
\begin{gathered}
w=x^{2} y^{2} \\
x=e^{t}, y=e^{3 t} \\
\frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}
\end{gathered}
$$

1. Find dw/dt using the appropriate Chain Rule (Similar to p. 931 \#1-4)

$$
\begin{gathered}
w=x^{3}-7 y^{2} \\
x=t, y=2 t \\
\frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}
\end{gathered}
$$

3. Find $d w / d t$ (a) by using the appropriate Chain Rule, and (b) by converting w to a function of t before differentiating
(Similar to p. 931 \#5-10)

$$
\begin{aligned}
& w=x y-x z+y z \\
& x=t+2, y=t-3, z=t^{2} \\
& \frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial w}{\partial z} \cdot \frac{d z}{d t}
\end{aligned}
$$

4. Find $d^{2} w / d t^{2}$ using the appropriate Chain Rule. Evaluate $d^{2} w / d t^{2}$ at the given value of t (Similar to p. 931 \#13-14)

$$
\begin{aligned}
& w=\frac{x^{3}}{y^{2}} \\
& x=t+3, y=t^{2}, t=1
\end{aligned}
$$

5. Find $\partial w / \partial s$ and $\partial w / \partial t$ using the appropriate Chain Rule and evaluate each partial derivative at the given values of s and t
(Similar to p.931 \#15-18)
$w=x^{3}+y^{2}$
$x=4 s+2 t, y=5 s-3 t$
Point: $s=2, t=1$
6. Find $\partial w / \partial r$ and $\partial w / \partial \theta$ (a) by using the appropriate Chain Rule and (b) by converting w to a function of r and θ before differentiating
(Similar to p.931 \#19-22)
$w=x^{2}+3 x y-2 y^{2}$
$x=2 r+\theta, y=2 r-\theta$
7. Find $\partial w / \partial s$ and $\partial w / \partial t$ by using the appropriate Chain Rule
(Similar to p. 931 \#23-26)
$w=e^{x^{2} y^{3} z}$
$x=3 s+t, y=2 s-4 t, z=5 s$
8. Differentiate implicitly to find $d y / d x$
(Similar to p.931 \#27-30)

$$
\ln \sqrt[3]{3 x^{2}+y}-7 x=0
$$

$$
\begin{gathered}
x^{3}-7 x y-4 x+3 y^{2}=0 \\
\frac{d y}{d x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)}
\end{gathered}
$$

8. Differentiate implicitly to find $d y / d x$
(Similar to p. 931 \#27-30)
9. Differentiate implicitly to find the first partial derivatives of z
(Similar to p. 931 \#31-38)
$\frac{\partial z}{\partial x}=-\frac{F_{x}(x, y, z)}{F_{z}(x, y, z)} \quad \frac{\partial z}{\partial y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)}$
10. Differentiate implicitly to find the first partial derivatives of z
(Similar to p.931 \#31-38)

$$
\sin (x-z)-e^{y z}=3 y
$$

12. Differentiate implicitly to find the first partial derivatives of w
(Similar to p. 931 \#39-42)

$$
\tan (x y z w)-x y+5 w z=3
$$

$\frac{\partial w}{\partial x}=-\frac{F_{x}}{F_{w}} \quad \frac{\partial w}{\partial y}=-\frac{F_{y}}{F_{w}} \quad \frac{\partial w}{\partial z}=-\frac{F_{z}}{F_{w}}$

