

1. Find the total differential
(Similar to p.923 \#1-10)

$$
z=3 x^{5} y^{2}
$$

total differential
$\mathrm{dz}=\mathrm{f}_{\mathrm{x}}(x, y) d x+f_{y}(x, y) d y$
2. Find the total differential
3. Find the total differential
(Similar to p. 923 \#1-10)

$$
z=e^{3 x^{2}-2 x+5} \sec y
$$

total differential
$\mathrm{dz}=\mathrm{f}_{\mathrm{x}}(x, y) d x+f_{y}(x, y) d y$
5. A triangle is measured and the base is 20 inches and the height is 7 inches. The possible errors in measurement are $1 / 8$ inch for the base and height. Approximate the maximum possible error in the computation of the area.
4. Evaluate $f(3,1)$ and $f(3.1,1.05)$ and calculate Δz, and (b) use the total differential $d z$ to approximate Δz
(Similar to p. 923 \#11-16)

$$
f(x, y)=x^{3}-7 y^{2}
$$

Formula
$\Delta \mathrm{z}=\mathrm{f}_{\mathrm{x}}\left(x_{o}, y_{o}\right) \Delta x+f_{y}\left(x_{o}, y_{o}\right) \Delta y$

