Differentiation and Integration of Vector-Valued Functions

1. Sketch the plane curve represented by the vector-valued function, and sketch the vectors $\mathbf{r}\left(\mathrm{t}_{\mathrm{o}}\right)$ and $\mathbf{r}^{\prime}\left(\mathrm{t}_{\mathrm{o}}\right)$ for the given value of t_{o}. Position the vectors such that the initial point of $r\left(t_{0}\right)$ is at the origin and the initial point of $\mathbf{r}^{\prime}\left(\mathrm{t}_{0}\right)$ is at the terminal point of $\mathbf{r}\left(\mathrm{t}_{0}\right)$. What is the relationship between $\mathbf{r}^{\prime}\left(\mathrm{t}_{0}\right)$ and the curve?
(Similar to p. 848 \#1-8)

$$
\mathbf{r}(t)=(t-2) \mathbf{i}+t^{2} \mathbf{j}, t_{o}=1
$$

> 2. Sketch the plane curve represented by the vector-valued function, and sketch the vectors $\mathbf{r}\left(\mathrm{t}_{\mathrm{o}}\right)$ and $\mathbf{r}^{\prime}\left(\mathrm{t}_{\mathrm{o}}\right)$ for the given value of t_{o}. Position the vectors such that the initial point of $\mathbf{r}\left(\mathrm{t}_{\mathrm{o}}\right)$ is at the origin and the initial point of $\mathbf{r}^{\prime}\left(\mathrm{t}_{\mathrm{o}}\right)$ is at the terminal point of $\mathbf{r}\left(\mathrm{t}_{\mathrm{o}}\right)$. What is the relationship between $\mathbf{r}^{\prime}\left(\mathrm{t}_{0}\right)$ and the curve?
> (Similar to p.848 \#1-8)
> $\mathbf{r}(t)=<2 \sin (t), 3 \cos (t)>, t_{o}=\frac{\pi}{2}$
3. Sketch the space curve represented by the vector-valued function, and sketch the vectors $r\left(t_{0}\right)$ and $\mathbf{r}^{\prime}\left(t_{0}\right)$ for the given value of t_{0}.
(Similar to p. 848 \#9-10)

$$
\mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j}+4 \mathbf{k}, t_{o}=2
$$

4. Find $\mathbf{r}^{\prime}(\mathrm{t})$

(Similar to p. 848 \#11-22)

5. Find $r^{\prime}(t)$

(Similar to p.848 \#11-22)

$$
\mathbf{r}(t)=t^{4} \mathbf{i}+\sqrt[3]{t} \mathbf{j}
$$

6. Find $\mathbf{r}^{\prime}(\mathrm{t})$

(Similar to p. 848 \#11-22)

$$
\mathbf{r}(t)=<t^{2} \cos (t), \sqrt{t}, 5 t>
$$

8. Find (a) $r^{\prime}(t)$, $(b) r^{\prime \prime}(t)$, and $(c) r^{\prime}(t) \cdot r^{\prime \prime}(t)$
(Similar to p.848 \#23-30)
$\mathbf{r}(t)=<\cos (2 t), \sin (2 t), t e^{t}>$

Smooth Curve

Given a vector-valued function:

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

is smooth on an open interval 1 if f^{\prime}, g^{\prime}, and h^{\prime} are continuous on I and $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$ for any value of t in the interval I
7. Find (a) $r^{\prime}(t)$, (b) $r^{\prime \prime}(t)$, and $(c) r^{\prime}(t) \cdot r^{\prime \prime}(t)$
(Similar to p.848 \#23-30)

$$
\mathbf{r}(t)=t^{4} \mathbf{i}-\left(t^{2}-1\right) \mathbf{j}
$$

9. Given the vector-valued function, find the unit vectors:
$\mathbf{r}^{\prime}\left(t_{o}\right) /\left\|\mathbf{r}^{\prime}\left(t_{o}\right)\right\|$ and $\mathbf{r}^{\prime \prime}\left(t_{o}\right) /\left\|\mathbf{r}^{\prime \prime}\left(t_{o}\right)\right\|$ (Similar to p. 848 \#31-32)

$$
\begin{gathered}
\mathbf{r}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}+t^{3} \mathbf{k} \\
\mathrm{t}_{\mathrm{o}}=\pi / 2
\end{gathered}
$$

Smooth Curve
Given a vector-valued function:
$\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$
is smooth on an open interval I if $\mathrm{f}^{\prime}, \mathrm{g}^{\prime}$, and h^{\prime} are
continuous on I and $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$ for any value of t
in the interval I

10. Find the open interval(s) on which the curve given by the vector-valued function is smooth (Similar to p. 848 \#33-42)

$$
\mathbf{r}(t)=t^{4} \mathbf{i}+3 t^{2} \mathbf{j}
$$

11. Find the open interval(s) on which the curve given by the vector-valued function is smooth
(Similar to p. 848 \#33-42)

$$
\mathbf{r}(t)=\cos ^{5}(t) \mathbf{i}+\sin ^{3}(t) \mathbf{j}
$$

12. Find the open interval(s) on which the curve given by the vector-valued function is smooth
(Similar to p. 848 \#33-42)

$$
\mathbf{r}(t)=\frac{1}{t-2} \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}
$$

13. Use the properties of the derivative to find the following (a) $r^{\prime}(t) \quad(b) r^{\prime \prime}(t)(c) D_{t}[r(t) \cdot u(t)]$
(d) $D_{t}[3 r(t)-u(t)]$ (e) $D_{t}[r(t) x u(t)]$
(f) $D_{t}[| | r(t)| |], t>0$
(Similar to p.848 \#43-44)

$$
\begin{gathered}
\mathbf{r}(t)=4 t \mathbf{i}+t^{3} \mathbf{j}+5 t \mathbf{k} \\
\mathbf{u}(t)=t^{2} \mathbf{i}+\mathrm{t} \mathbf{j}+6 t \mathbf{k}
\end{gathered}
$$

15. Find the indefinite integral
(Similar to p. 849 \#53-60)

$$
\int(3 t \mathbf{i}+\mathbf{j}-2 \mathbf{k}) d t
$$

14. Use the definition of the derivative to find $r^{\prime}(t)$
(Similar to p.849 \#49-51)

$$
\mathbf{r}(t)=(5 t-1) \mathbf{i}+t^{2} \mathbf{j}
$$

16. Find the indefinite integral (Similar to p. 849 \#53-60)
$\int\left(\sqrt[3]{t} \mathbf{i}+(\sin t) \mathbf{j}-e^{2 t-1} \mathbf{k}\right) d t$
17. Evaluate the definite integral (Similar to p. 849 \#61-66)

$$
\int_{0}^{4}\left(t^{2} \mathbf{i}+\sqrt{t} \mathbf{j}-t \mathbf{k}\right) d t
$$

19. Find $\mathbf{r}(\mathrm{t})$ for the given conditions (Similar to p.849 \#67-72)
$\boldsymbol{r}^{\prime}(t)=t e^{t} \mathbf{i}-t^{2} \mathbf{j}+3 \mathbf{k}$, $\mathbf{r}(0)=4 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
