Directional Derivatives and Gradients

Finding Directional Derivatives at a point $\left(x_{0}, y_{0}\right)$ in the direction of a vector \mathbf{v}

1. Find the unit vector (\mathbf{u}) of the given vector: $\boldsymbol{u}=\frac{v}{\|v\|}$
2. Find $\nabla f(x, y)=f_{x}(x, y) \boldsymbol{i}+$ $f_{y}(x, y) \mathbf{j}$
3. Find $\nabla f\left(x_{0}, y o\right)$
4. $\mathrm{D}_{\mathrm{u}} \mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\nabla f\left(x_{o}, y o\right) \cdot \mathbf{u}$
5. Find the directional derivative of the function at P
in the direction of \mathbf{v}
(Similar to p. 942 \#1-12)
$f(x, y)=5 x+2 x y-3 y, \quad P(3,5), v=\frac{4}{5} i+\frac{3}{5} j$
6. Find the directional derivative of the function at P
in the direction of \mathbf{v}
(Similar to p. 942 \#1-12)
$f(x, y, z)=x^{2} y z^{3}, \quad P(2,1,-4), v=<2,3,1>$
7. Find the directional derivative of the function at P in the direction of \mathbf{v}
(Similar to p. 942 \#1-12)
$f(x, y)=e^{2 x}-\cos y, \quad P(0, \pi), v=2 i+4 j$
8. Find the directional derivative of the function in the direction of the unit vector $\mathbf{u}=\cos (\theta) \mathbf{i}+\sin (\theta) \mathbf{j}$ (Similar to p. 942 \#13-16)

$$
f(x, y)=x^{2}+y^{3}, \quad \theta=\frac{3 \pi}{4}
$$

5. Find the directional derivative of the function at P
in the direction of Q
(Similar to p.942 \#17-20)

$$
f(x, y)=x e^{y}, \quad P(2,1), Q(5,3)
$$

7. Find the gradient of the function at the given point

 (Similar to p. 942 \#21-26)$$
f(x, y)=\sin \left(x^{3}-y\right), \quad(1,2)
$$

6. Find the gradient of the function at the given point
(Similar to p. 942 \#21-26)

$$
\begin{equation*}
f(x, y)=5 x^{2}-y^{3}, \tag{3,1}
\end{equation*}
$$

$$
\nabla f(x, y)=f_{x}(x, y) \mathrm{i}+f_{y}(x, y) \mathrm{j}
$$

8. Use the gradient to find the directional derivative of the function at P in the direction of Q
(Similar to p. 942 \#27-30)

$$
f(x, y)=5 x-y^{4}-3, \quad P(2,0), Q(5,1)
$$

9. Find the gradient of the function and the maximum value of the directional derivative at the given point
(Similar to p. 942 \#31-40)

$$
\begin{equation*}
f(x, y)=\frac{x^{2}-y}{2 y+3}, \tag{1,2}
\end{equation*}
$$

maximum value : $\|\nabla f(x, y)\|$
minimum value: - $\|\nabla f(x, y)\|$
10. Find the gradient of the function and the maximum value of the directional derivative at the given point
(Similar to p. 942 \#31-40)
$f(x, y, z)=\sqrt{x^{2}-y^{2}+3 z^{2}}, \quad(1,0,2)$

