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Double Integrals and Volume

1.  Approximate the integral �� �� �, � ��
by dividing the rectangle R with vertices (0, 0), (4, 0), 

(4, 2), and (0, 2) into eight equal squares and finding 

the sum ∑ �(�� , ��)∆��
�
��� where (xi, yi) is the center 

of the ith square.  Evaluate the iterated integral and 

compare it with the approximation

(Similar to p.1000 #1-4)
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2.  Sketch the region R and evaluate the iterated 

integral

(Similar to p.1000 #7-12)
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3.  Set up integrals for both orders of integration, and 

use the more convenient order to evaluate the 

integral over the region R.

(Similar to p.1001 #13-20)
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4.  Use a double integral to find the volume of the 

indicated solid

(Similar to p.1001 #21-29)
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5.  Set up and evaluate a double integral to find the 

volume of the solid bounded by the graphs of the 

equations.

(Similar to p.1001 #33-40)
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6.  Set up and evaluate a double integral to find the 

volume of the solid bounded by the graphs of the 

equations.

(Similar to p.1001 #33-40)
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7.  Set up and evaluate a double integral to find the 

volume of the solid bounded by the graphs of the 

equations.

(Similar to p.1001 #33-40)

octantfirst 4,zy4,zx 2222
=+=+

8.  Sketch the region of integration.  Then evaluate 

the iterated integral, switching the order of 

integration if necessary

(Similar to p.1002 #53-58)
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