Double Integrals and Volume

1. Approximate the integral $\int R \int f(x, y) d A$
by dividing the rectangle R with vertices $(0,0),(4,0)$, $(4,2)$, and $(0,2)$ into eight equal squares and finding the sum $\sum_{i=1}^{8} f\left(x_{i}, y_{i}\right) \Delta A_{i}$ where ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) is the center of the ith square. Evaluate the iterated integral and compare it with the approximation
(Similar to p. 1000 \#1-4)

$$
\int_{0}^{4} \int_{0}^{2}(2 \mathrm{x}+4 \mathrm{y}) d y \mathrm{dx}
$$

2. Sketch the region R and evaluate the iterated integral
(Similar to p. 1000 \#7-12)

$$
\int_{0}^{3} \int_{0}^{1}(3+\mathrm{x}+2 \mathrm{y}) d y \mathrm{dx}
$$

3. Set up integrals for both orders of integration, and use the more convenient order to evaluate the integral over the region R.
(Similar to p. 1001 \#13-20)

$$
\int_{R} \int\left(\frac{2 \mathrm{y}}{\mathrm{x}^{2}+y^{2}}\right) d A
$$

R : trapezoid bounded by
$y=\frac{1}{2} x, y=3 x, x=1, x=4$

4. Use a double integral to find the volume of the indicated solid
(Similar to p. 1001 \#21-29)
$z=\frac{y}{4}$
$0 \leq x \leq 8$
$0 \leq y \leq 4$

5. Set up and evaluate a double integral to find the volume of the solid bounded by the graphs of the equations.
(Similar to p. 1001 \#33-40)
$\mathrm{z}=x^{2} y, z=0, y=x, x=2$, first octant
6. Set up and evaluate a double integral to find the volume of the solid bounded by the graphs of the equations.
(Similar to p. 1001 \#33-40)

$$
\mathrm{z}=x^{4}, z=0, x=0, x=3, y=0, y=2
$$

7. Set up and evaluate a double integral to find the volume of the solid bounded by the graphs of the equations.
(Similar to p. 1001 \#33-40)

$$
x^{2}+z^{2}=4, y^{2}+z^{2}=4, \text { first octant }
$$

8. Sketch the region of integration. Then evaluate the iterated integral, switching the order of integration if necessary
(Similar to p. 1002 \#53-58)

$$
\int_{0}^{6} \int_{\mathrm{y} / 3}^{2}\left(e^{\mathrm{x}^{2}}\right) d x \mathrm{dy}
$$

