## Extrema of Functions of Two Variables

## Second Partials Test

Let $f$ have continuous second partial derivatives on an open region containing a point $(a, b)$ for which $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$
Let $d=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$

1. If $d>0$ and $f_{x x}(a, b)>0$,
relative $\min$ at $(a, b, f(a, b))$
2. If $d>0$ and $f_{x x}(a, b)<0$, relative max at $(a, b, f(a, b))$
3. If $d<0$, then $(a, b, f(a, b))$ is a saddle point
4. The test is inconclusive if $d=0$
5. Find any critical points and test for relative extrema.
(Similar to p. 960 \#1-6)

$$
f(x, y)=(x+4)^{2}+(y-2)^{2}
$$

3. Find any critical points and test for relative extrema.
(Similar to p.960 \#7-16)
$f(x, y)=-x^{2}-3 y^{2}+8 x-12 y+3$
4. Find any critical points and test for relative extrema.
(Similar to p. 960 \#1-6)

$$
f(x, y)=x^{2}+y^{2}+4 x-8 y+2
$$

4. Find any critical points and test for relative extrema.
(Similar to p.960 \#7-16)

$$
f(x, y)=\sqrt{3 x^{2}+y^{2}}
$$

5. Find any critical points and test for relative extrema.
(Similar to p. 960 \#7-16)

$$
f(x, y)=2-|x+3|-|y-1|
$$

6. Examine the function for relative extrema and
7. Find the critical points of the function and, from the form of the function, determine whether a relative maximum or a relative minimum occurs at each point
(Similar to p. 961 \#43-44)

$$
f(x, y, z)=(x-2)^{2}+(y+1)^{2}+(z-5)^{2}
$$ region R. (In each case, R contains the boundaries.) Use a computer algebra system to confirm your results

(Similar to p. 961 \#45-54)
find the critical points (make sure they are in the region)

- Find the high and low points of the boundaries

Find the high and low points of the boundaries
(plug in either $x$ or $y$ and then take derivative)

- Find the intersections
- Plug all of the above into the function, largest value is your absolute maximum point, smallest value is your absolute minimum point


## Absolute Extrema

- Find the first partials, set them equal to zero and
saddle points
(Similar to p. 960 \#21-28)

$$
f(x, y)=x y-2 x
$$

6. Examine the function for

$$
\text { (Simiar to p. } 961 \text { \#43-44) }
$$

## 9. Find the absolute extrema of the function over the

$$
\begin{aligned}
& f(x, y)=x^{2}+x y \\
& R=\{(x, y):-3 \leq x \leq 3,-1 \leq y \leq 1\}
\end{aligned}
$$

