

1. Use Green's Theorem to evaluate the integral
(Similar to p. 1099 \#7-10)
$\int_{C}(y-x) d x+(8 x-y) d y$
for the path C : boundary of the region lying between the graphs of $\mathrm{y}=\mathrm{x}$ and $y=x^{2}-8 x$

Green's Theorem

Let R be a simply connected region with a piecewise smooth boundary C, oriented counterclockwise (that is, C is traversed once so that the region R always lies to the left). If M and N have continuous first partial derivatives in an open region containing R, then

$$
\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

2. Use Green's Theorem to evaluate the integral
(Similar to p. 1099 \#7-10)
$\int_{C}(y-x) d x+(2 x-y) d y$
for the path C defined as
$\mathrm{x}=5 \cos \theta, y=3 \sin \theta$

Hint : Area of Ellipse $=\pi \mathrm{ab}$
3. Use Green's Theorem to evaluate the integral
(Similar to p. 1099 \#7-10)
$\int_{C}(y-x) d x+(2 x-y) d y$
where C is the boundary of the region lying inside the rectangle bounded by $\mathrm{x}=-2, \mathrm{x}=2, \mathrm{y}=-4, y=4$, and outside the square bounded by $x=-1, x=1$ $\mathrm{y}=-1$, and $\mathrm{y}=1$
4. Use Green's Theorem to evaluate the integral
(Similar to p. 1099 \#11-20)
$\int_{C}(3 x y) d x+(x+y) d y$
C : boundary of the region lying between the graphs of $y=0$ and $y=4-x^{2}$
5. Use Green's Theorem to evaluate the integral (Similar to p. 1099 \#11-20)

$$
\int_{C}\left(y^{2}\right) d x+(3 x y) d y
$$

C : boundary of the region lying between the graphs of $y=0, y=\sqrt{x}$ and $\mathrm{x}=16$
6. Use Green's Theorem to evaluate the integral (Similar to p. 1099 \#11-20)

$$
\int_{C}\left(x^{2}-y^{2}\right) d x+(10 x y) d y
$$

for the path $C: x^{2}+y^{2}=9$
7. Use Green's Theorem to calculate the work done by the force F on a particle that is moving counterclockwise around the closed path C (Similar to p.1099 \#21-24)
$F(x, y)=5 x y i+(x+y) j$
$C: x^{2}+y^{2}=16$
Hint : Change to polar form

