Iterated Integrals and Area in the Plane

1. Evaluate the integral (Similar to p.990 #1-10)

$$\int_{0}^{x} (5x + 3y) dx$$

2. Evaluate the integral (Similar to p.990 #1-10)

$$\int_{0}^{\sqrt{x-1}} (7xy) \, dy$$

3. Evaluate the integral (Similar to p.990 #1-10)

$$\int_{0}^{3x} (e^{x^2y}) \, dy$$

4. Evaluate the integral (Similar to p.990 #1-10)

$$\int_{0}^{3x} (ye^{-3xy}) \, dy$$

5. Evaluate the iterated integral (Similar to p.990 #11-30)

$$\int_{0}^{2} \int_{0}^{3} (4x - y) \, \mathrm{d}y \, \mathrm{d}x$$

6. Evaluate the iterated integral (Similar to p.990 #11-30)

$$\int_{0}^{\pi/2} \int_{0}^{2} (y^{2} \sin x) \, dy \, dx$$

7. Evaluate the iterated integral (Similar to p.990 #11-30)

$$\int_{0}^{3} \int_{0}^{\sqrt{x}} (ye^{3x}) \, dy \, dx$$

8. Evaluate the iterated integral (Similar to p.990 #11-30)

$$\int_{0}^{\pi/2} \int_{0}^{\sin \theta} (r^5 \cos \theta) \, \mathrm{d}r \, \mathrm{d}\theta$$

9. Evaluate the improper iterated integral (Similar to p.990 #31-34)

$$\int_{1}^{\infty} \int_{0}^{2/x} (5y^4) \, \mathrm{d}y \, \mathrm{d}x$$

10. Use an iterated integral to find the area of the region bounded by the graphs of the equations (Similar to p.990 #39-46)

$$4x-3y=0$$
, $x+y=7$, $y=0$

11. Use an iterated integral to find the area of the region bounded by the graphs of the equations (Similar to p.990 #39-46)

$$y = 9 - x^2$$
, $y = x + 3$

12. Sketch the region R of integration and switch the order of integration
(Similar to p.990 #47-54)

$$\int_{0}^{3} \int_{0}^{1/2y} (f(x, y)) \, dx \, dy$$

 Sketch the region R of integration and switch the order of integration (Similar to p.990 #47-54)

$$\int_{-2}^{2} \int_{x^{2}}^{4} (f(x, y)) \, dy \, dx$$

14. Sketch the region R whose area is given by the iterated integral. Then switch the order of integration and show that both orders yield the same area.

(Similar to p.990 #55-63)

$$\int_{0}^{6} \int_{x/3}^{2} dy dx$$

15. Sketch the region of integration. Then evaluate the iterated integral (Note that it is necessary to switch the order of integration)

(Similar to p.991 #67-72)

$$\int_{0}^{4} \int_{x}^{4} \left(x \sqrt[5]{2 + y^{3}} \right) dy dx$$

16. Sketch the region of integration. Then evaluate the iterated integral (Note that it is necessary to switch the order of integration)

(Similar to p.991 #67-72)

$$\int_{0}^{1} \int_{y}^{1} (\cos x^{2}) dx dy$$