Lagrange Multipliers

1. Use Lagrange multipliers to find the indicated extrema, assuming that x and y are positive (Similar to p. 976 \#5-10)

Minimize $f(x, y)=x^{2}+3 y^{2}$
Constraint : $x+4 y-7=0$

Lagrange Multipliers with One Constraint

1. Get zero on one side of the constraint, the other side is g
2. Find ∇f and ∇g
3. Solve $\nabla f=\lambda \nabla g$

Either:
a) Find $x=$ something $\lambda, y=$ something λ
b) Plug these into constraint and solve for λ
c) Now plug λ into $x=$ something λ,
$y=$ something λ and find x, y Or:
a) solve both equations for λ and equate them
2. Use Lagrange multipliers to find the indicated extrema, assuming that x and y are positive (Similar to p.976 \#5-10)

Minimize $f(x, y)=\sqrt{x^{2}-y^{2}}$
Constraint: $3 x+2 y=5$
3. Use Lagrange multipliers to find the indicated extrema, assuming that x, y and z are positive (Similar to p.976 \#11-14)

Minimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$
Constraint : $x+y+z-5=0$
4. Use Lagrange multipliers to find the indicated extrema of f subject to two constraints. In each case, assume that x, y and z are nonnegative (Similar to p. 976 \#17-18)

Maximize $f(x, y, z)=x y z$
Constraint : $x+y+z=20, x-y+z=0$
$\nabla f=\lambda \nabla g+\mu \nabla h$
5. Use Lagrange multipliers to find the minimum distance from the curve or surface to the indicated point. [Hint: use $\min f(x, y)=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}$ (Similar to p.976 \#19-25)

Curve: Line: $4 x-y=2$
Point: $(3,5)$

