Surface Area

1. Find the area of the surface given by $z=f(x, y)$ over the region R (Hint: Some of the integrals are simpler in polar coordinates)
(Similar to p. 1025 \#1-14)
$f(x, y)=3 x+3 y$
R : triangle with vertices $(0,0),(7,0),(0,3)$

Definition of Surface Area

If f and its first partial derivatives are continuous on the closed region R in the $x y$-plane, then the area of the surface S given by $z=f(x, y)$ over R is defined as:

Surface area $=\iint_{R} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A$
2. Find the area of the surface given by $z=f(x, y)$ over the region R (Hint: Some of the integrals are simpler in polar coordinates)
(Similar to p. 1025 \#1-14)

$$
\begin{aligned}
& f(x, y)=3 x+4 y+5 \\
& \mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}+y^{2} \leq 9\right\}
\end{aligned}
$$

3. Find the area of the surface given by $z=f(x, y)$ over the region R (Hint: Some of the integrals are simpler in polar coordinates)
(Similar to p. 1025 \#1-14)
$f(x, y)=4-x^{2}$
R : rectangle with vertices $(0,0),(0,2),(5,0),(5,2)$
4. Find the area of the surface given by $z=f(x, y)$ over the region R (Hint: Some of the integrals are simpler in polar coordinates)
(Similar to p. 1025 \#1-14)

$$
\begin{aligned}
& f(x, y)=\sqrt{x^{2}+y^{2}} \\
& \mathrm{R}=\{(\mathrm{x}, \mathrm{y}): 0 \leq \mathrm{f}(\mathrm{x}, \mathrm{y}) \leq 4\}
\end{aligned}
$$

5. Find the area of the surface (Similar to p. 1025 \#15-18)

The portion of the plane $\mathrm{z}=10-5 \mathrm{x}-2 \mathrm{y}$ in the first octant

Hint : For the region R, let z equal 0 and find your x and y intercepts, then find the equation of the line
6. Set up a double integral that gives the area of the surface on the graph of f over the region R (Similar to p. 1025 \#29-34)
$f(x, y)=4 x^{2}-5 x y+y^{5}$
R : Rectangle with vertices
$(-3,-5),(-3,7),(4,-5),(4,7)$

