Tangent Planes and Normal Lines

1. Find a unit normal vector to the surface at the given point. (Similar to p. 951 \#5-16)

$$
5 x-2 y+3 z=0, \quad(2,5,0)
$$

Finding an equation of the tangent plane to the surface at the given point

$$
\left(x_{0}, y_{o}, z_{0}\right)
$$

1. Find: $f_{x}(x, y, z), f_{y}(x, y, z)$, and $f_{z}(x, y, z)$
2. Find $f_{x}\left(x_{o}, y o, z o\right), f_{y}\left(x_{o}, y o, z o\right)$, and $f_{z}\left(x_{o}, y o, z o\right)$
3. Equation of the plane is $f_{x}\left(x_{o}, y o, z o\right)\left(x-x_{0}\right)+f_{y}\left(x_{o}, y o, z o\right)\left(y-y_{0}\right)+$ $f_{z}\left(x_{o}, y o, z o\right)\left(z-z_{0}\right)=0$

Finding a unit normal vector to the surface at the given point.

1. Find: $\nabla f(x, y, z)=f_{x}(x, y, z) \boldsymbol{i}+$ $f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}$
2. Find $\nabla f\left(x_{o}, y o, z_{o}\right)$
3. Find $\left\|\nabla f\left(x_{o}, y o, z o\right)\right\|$
4. Find Unit normal vector:

$$
\mathbf{n}=\frac{\nabla f\left(x_{o}, y o, z o\right)}{\left\|\nabla f\left(x_{o}, y o, z o\right)\right\|}
$$

2. Find a unit normal vector to the surface at the given point.
(Similar to p. 951 \#5-16)

$$
z=\sqrt[3]{x^{2}+y}, \quad(3,-1,2)
$$

3. Find an equation of the tangent plane to the surface at the given point (Similar to p.951 \#17-30)

$$
f(x, y)=x^{2}-3 y+y^{2}, \quad(3,1,7)
$$

4. Find an equation of the tangent plane to the surface at the given point
(Similar to p.951 \#17-30)

$$
\begin{equation*}
f(x, y)=e^{3 x-2 y} \tag{2,3,1}
\end{equation*}
$$

5. Find an equation of the tangent plane to the surface at the given point
(Similar to p.951 \#17-30)

$$
4 y=2(x+5 z), \quad(1,8,3)
$$

6. Find an equation of the tangent plane and find symmetric equations of the normal line to the surface at the given point.
(Similar to p. 951 \#31-40)

$$
\begin{equation*}
x^{2}-2 y^{2}+7 z^{2}=0 \tag{1,2,1}
\end{equation*}
$$

Finding angle of inclination θ of the tangent plane to the surface at the given point

1. Find: $\nabla f(x, y, z)=f_{x}(x, y, z) \boldsymbol{i}+$ $f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}$
2. Find $\nabla f\left(x_{o}, y o, z_{o}\right)$
3. Find $\left\|\nabla f\left(x_{o}, y o, z o\right)\right\|$
4. Find angle:

$$
\cos \theta=\frac{\left|\nabla f\left(x_{o}, y o, z o\right) \cdot \mathbf{k}\right|}{\left\|\nabla f\left(x_{o}, y o, z o\right)\right\|}
$$

8. Find the angle of inclination θ of the tangent plane to the surface at the given point.
(Similar to p. 951 \#47-50)

$$
x^{2}+y^{2}-5 z=0, \quad(3,1,2)
$$

