

Definitions of Unit Tangent Vector

Let C be a smooth curve represented by \mathbf{r} on an open interval I. The unit tangent vector $T(t)$ at t is defined as

$$
\boldsymbol{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}, \quad \boldsymbol{r}^{\prime}(t) \neq \mathbf{0}
$$

2. Find the unit tangent vector to the curve at the specified value of the parameter
(Similar to p. 865 \#5-10)
$\boldsymbol{r}(\mathrm{t})=2 \cos (\mathrm{t}) \mathbf{i}+3 \sin (\mathrm{t}) \mathbf{j}, \mathrm{t}=\frac{\pi}{6}$

Note

Given a tangent vector $T(t)$ at a point: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$:
Form: $k<a_{1}, b_{1}, c_{1}>$
Direction numbers: $a=a_{1}, b=b_{1}, c=c_{1}$
Parametric Equations:
$x=a t+x_{1}, \quad y=b t+y_{1}, \quad z=c t+z_{1}$
3. Find the unit tangent vector $\mathrm{T}(\mathrm{t})$ and find a set of parametric equations for the line tangent
to the space curve at point P
(Similar to p. 865 \#11-16)

$$
\boldsymbol{r}(t)=t^{2} \mathbf{i}+5 t \mathbf{j}+\mathrm{t} \mathbf{k}, \mathrm{P}(0,0,0)
$$

4. Find the unit tangent vector $\mathrm{T}(\mathrm{t})$ and find a set of parametric equations for the line tangent to the space curve at point P (Similar to p. 865 \#11-16)
$\boldsymbol{r}(t)=<2 \cos (\mathrm{t}), 2 \sin (\mathrm{t}), 3>, P(\sqrt{3}, 1,3)$
5. Find the unit tangent vector $\mathbf{T}(\mathrm{t})$ and find a set of parametric equations for the line tangent to the space curve at point P
(Similar to p. 865 \#11-16)

$$
\boldsymbol{r}(t)=<\mathrm{t}, \mathrm{t}^{2}, 3 \mathrm{t}-1>, P(2,4,5)
$$

Definition: Principal Unit Normal Vector

Let C be a smooth curve represented by \mathbf{r} on an open interval I. If $\mathbf{T}^{\prime}(t) \neq \mathbf{0}$, then the principal unit normal vector at t defined as

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}
$$

6. Find the principal unit normal vector to the curve at the specified value of the parameter
(Similar to p. 866 \#23-30)

$$
\boldsymbol{r}(t)=\mathrm{t}^{2} \mathbf{i}+5 \mathrm{t} \mathbf{j}, \mathrm{t}=3
$$

7. Find the principal unit normal vector to the curve at the specified value of the parameter
(Similar to p. 866 \#23-30)

$$
\boldsymbol{r}(t)=\ln (t) \mathbf{i}+\mathrm{t}^{2} \mathbf{j}+5 \mathbf{k}, \mathrm{t}=1
$$

8. Find $v(t), a(t), T(t)$, and $N(t)$ (if it exists) for the an object moving along the path given by the vector-valued function $r(t)$ (Similar to p. 866 \#31-34)

$$
\boldsymbol{r}(t)=5 t^{2} \mathbf{i}-3 \mathrm{t} \mathbf{j}, \mathrm{t}=1
$$

Tangential and Normal Components of Acceleration

If $\mathbf{r}(\mathrm{t})$ is the position vector for a smooth curve C [for which $\mathbf{N}(\mathrm{t})$ exists], then the tangential and normal components of acceleration are as follows:

$$
\begin{gathered}
a_{\mathbf{T}}=D_{t}[\|\mathbf{v}\|]=\mathbf{a} \cdot \mathbf{T}=\frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{v}\|} \\
a_{\mathbf{N}}=\|\mathbf{v}\|\left\|\mathbf{T}^{\prime}\right\|=\mathbf{a} \cdot \mathbf{N}=\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|}=\sqrt{\|\mathbf{a}\|^{2}-\mathbf{a}_{\mathbf{T}}^{2}}
\end{gathered}
$$

9. Find $T(t), N(t), a_{T}$, and a_{N} at the given time t for the plane curve $r(t)$ (Similar to p. 866 \#35-44)

$$
\boldsymbol{r}(t)=\left(1-t^{2}\right) \mathbf{i}+2 \mathrm{t}^{2} \mathbf{j}, \mathrm{t}=2
$$

10. Find $T(t), N(t), a_{T}$, and a_{N} at the given time t for the plane curve $r(t)$
(Similar to p. 866 \#35-44)

$$
\boldsymbol{r}(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}, \mathrm{t}=0
$$

11. Sketch the graph of the plane curve given by the vector-valued function, and, at the point on the curve determined by $\mathrm{r}\left(\mathrm{t}_{\mathrm{o}}\right)$, sketch the vectors T and N . Note that N points toward the concave side of the curve
(Similar to p. 866 \#49-54)

$$
\boldsymbol{r}(t)=5 \mathrm{t}^{2} \mathbf{i}+5 t \mathbf{j}, \mathrm{t}_{0}=\frac{1}{5}
$$

13. Find $T(t), N(t), a_{T}$, and a_{N} at the given time t for the space curve $r(t)$ [Hint: Find $a(t), T(t), a_{T}$, and a_{N}. Solve for N in the equation $\mathrm{a}(\mathrm{t})=\mathrm{a}_{\mathrm{T}} \mathrm{T}+$ $\left.a_{N} N.\right]$
(Similar to p.866 \#55-62)

$$
\boldsymbol{r}(t)=5 \mathrm{t} \mathbf{i}+4 t \mathbf{j}-2 \mathrm{t} \mathbf{k}, \mathrm{t}=2
$$

12. Sketch the graph of the plane curve given by the vector-valued function, and, at the point on the curve determined by $r\left(t_{0}\right)$, sketch the vectors T and N. Note that N points toward the concave side of the curve (Similar to p. 866 \#49-54)

$$
\boldsymbol{r}(t)=3 \cos (\mathrm{t}) \mathbf{i}+3 \sin (t) \mathbf{j}, \mathrm{t}_{0}=\frac{\pi}{2}
$$

