

1. Computer ||F|| and sketch several representative vectors in the vector field (Similar to p. 1067 \#7-16)

$$
\mathbf{F}(x, y)=y \mathbf{i}+2 x \mathbf{j}
$$

2. Find the conservative vector field for the potential function by finding its gradient
(Similar to p.1067 \#21-29)
Hint: $F(x, y)=f_{x} \mathbf{i}+f_{y} \mathbf{j}$

$$
f(x, y)=x^{3}+4 y^{2}
$$

3. Find the conservative vector field for the potential function by finding its gradient
(Similar to p.1067 \#21-29)
Hint: $F(x, y)=f_{x} \mathbf{i}+f_{y} j$

$$
f(x, y, z)=e^{3 x}-e^{y^{2} z^{3}}
$$

4. Verify that the vector field is conservative
(Similar to p. 1067 \#31-34)
Hint: $\mathbf{F}(\mathrm{x}, \mathrm{y})=\mathrm{Mi}+\mathrm{Nj}$ conservative if:

$$
\begin{gathered}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \\
\mathbf{F}(x, y)=x^{2} y \mathbf{i}+\frac{1}{3} x^{3} \mathbf{j}
\end{gathered}
$$

5. Determine whether the vector field is conservative.
(Similar to p. 1067 \#35-38)
Hint: $\mathbf{F}(\mathrm{x}, \mathrm{y})=\mathrm{Mi}+\mathrm{Nj}$ conservative if:

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

$$
\mathbf{F}(x, y)=7 x y \mathbf{i}+\frac{7}{2} x^{2} \mathbf{j}
$$

6. Determine whether the vector field is conservative.
(Similar to p. 1067 \#35-38)
Hint: $\mathbf{F}(\mathrm{x}, \mathrm{y})=\mathrm{Mi}+\mathrm{Nj}$
conservative if:
$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
$\mathbf{F}(x, y)=2 x^{2} y \mathbf{i}+x^{2} y^{3} \mathbf{j}$
7. Determine whether the vector field is conservative. If it is, find a potential function for the vector field
(Similar to p. 1067 \#39-48) Hint: $F(x, y)=f_{x} i+f_{y} j$
after you get f_{x} and f_{y}, take the integral with respect to the variable to get the potential function

$$
\mathbf{F}(x, y)=2 y \mathbf{i}+2 x \mathbf{j}
$$

9. Determine whether the vector field is
conservative. If it is, find a potential function for the vector field
(Similar to p. 1067 \#39-48) Hint: $F(x, y)=f_{x} i+f_{y} j$
after you get f_{x} and f_{y}, take the integral with respect to the variable to get the potential function

$$
\mathbf{F}(x, y)=3 e^{x} y \mathbf{i}+x^{3} \mathbf{j}
$$

10. Find curl F for the vector field at the given point (Similar to p. 1067 \#49-52)
$\mathbf{F}(x, y, z)=x^{2} \mathbf{y i}-3 x y z \mathbf{j}+4 x z \mathbf{k}$
$\operatorname{curl} \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\nabla \times \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\operatorname{curl} \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P\end{array}\right|$
$\operatorname{curl} \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial N}{\partial z}\right) i-\left(\frac{\partial \mathrm{P}}{\partial x}-\frac{\partial M}{\partial z}\right) j+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) k$

Test for Conservative Vector Field in Space

Suppose that M, N, and P have continuous first partial derivatives in an open sphere Q in space. The vector field given by $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{Mi}+\mathrm{Nj}+\mathrm{Pk}$ is conservative if and only if
Curl $F(x, y, z)=0$
That is, F is conservative if and only if:

$$
\frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}, \frac{\partial P}{\partial x}=\frac{\partial M}{\partial z} \text {, and } \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}
$$

> 11. Determine whether the vector field is conservative. If it is, find a potential function for the vector field
> (Similar to p.1068 \#57-62) Hint: $\mathbf{F}(\mathrm{x}, \mathrm{y})=\mathrm{f}_{\mathrm{x}} \mathbf{i}+\mathrm{f}_{\mathrm{y}} \mathbf{j}+\mathrm{f}_{\mathrm{z}} \mathbf{k}$
> after you get f_{x}, f_{y}, and f_{z}, take the integral with respect to the variable to get the potential function
> $\mathbf{F}(x, y, z)=x^{2} y^{3} z^{3} \mathbf{i}+x^{3} y^{2} z^{3} \mathbf{j}+x^{3} y^{3} z^{2} \mathbf{k}$
12. Find the divergence of the vector field \mathbf{F} (Similar to p. 1068 \#63-66)

$$
\mathbf{F}(x, y)=x^{3} \mathbf{i}+4 e^{y} \mathbf{j}
$$

Definition of Divergence of a Vector Field

The divergence of $\mathbf{F}(\mathrm{x}, \mathrm{y})=\mathbf{M i}+\mathrm{Nj}$ is:

$$
\operatorname{div} \mathrm{F}(\mathrm{x}, \mathrm{y})=\nabla \cdot F(x, y)=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}
$$

The divergence of $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathbf{M i}+\mathbf{N j}+\mathrm{Pk}$ is:
$\operatorname{div} \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\nabla \cdot F(x, y, z)=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}$
If $\operatorname{div} \mathbf{F}=0$, then \mathbf{F} is said to be divergence free
13. Find the divergence of the vector field \mathbf{F} (Similar to p. 1068 \#63-66)
$\mathbf{F}(x, y, z)=\ln \left(x^{2}+y\right) \mathbf{i}+x^{2} y^{3} \mathbf{j}+\ln \left(2 y^{2}-z^{2}\right) \mathbf{k}$
14. Find the divergence of the vector field \mathbf{F} at the given point (Similar to p. 1068 \#63-66)
$\mathbf{F}(x, y, z)=\mathrm{x}^{2} \mathrm{yz}^{3} \mathbf{i}+\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathbf{j}+\mathrm{z}^{4} \mathbf{k},(3,1,1)$

