
Step by Step: Finding Domain of a Vector-Valued Function

1. Find the domain of each component function
2. The domain of the vector-valued function is the intersection of all the domains from step 1
3. Find the domain of the vector-
valued function (Similar to p. 839 \#1-8)

$$
\mathbf{r}(t)=\frac{1}{t^{2}-4} \mathbf{i}+\frac{t}{3} \mathbf{j}+t \mathbf{k}
$$

2. Find the domain of the vectorvalued function (Similar to p. 839 \#1-8)

$$
\mathbf{r}(t)=\mathbf{F}(t) \times \mathbf{G}(t)
$$

where

$$
\mathbf{F}(t)=\ln (t-2) \mathbf{i}+\mathbf{t} \mathbf{j}-6 t \mathbf{k}
$$

$$
\mathbf{G}(t)=\sqrt{t+7} \mathbf{i}-t \mathbf{k}
$$

3. Evaluate (if possible) the vectorvalued function at each given value of t (Similar to p.839 \#9-12)

$$
\mathbf{r}(t)=t^{2} \mathbf{i}+4 t \mathbf{j}
$$

(a) $r(1)$
(b) $r(s+3)$
(c) $r(1+\Delta t)-r(1)$
4. Evaluate (if possible) the vectorvalued function at each given value of t (Similar to p.839 \#9-12)

$$
\mathbf{r}(t)=3 t^{2} \mathbf{i}+\ln (t) \mathbf{j}-4 \mathbf{k}
$$

(a) $r(4)$
(b) $r(-2)$

Review

Given: initial point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and terminal point $Q\left(x_{2}, y_{2}, z_{2}\right)$
Direction Vector
$\mathrm{v}=\left\langle\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}, \mathrm{z}_{2}-\mathrm{z}_{1}\right\rangle=\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$
Vector-Valued Function

$$
\mathbf{r}(t)=\left(x_{1}+a t\right) \mathbf{i}+\left(y_{1}+b t\right) \mathbf{j}+\left(z_{1}+c t\right) \mathbf{k}
$$

Parametric Equation

$$
\mathrm{x}=\mathrm{x}_{1}+\mathrm{at} \quad \mathrm{y}=\mathrm{y}_{1}+\mathrm{bt} \quad \mathrm{z}=\mathrm{z}_{1}+\mathrm{ct}
$$

7. Find $\mathbf{r}(\mathrm{t}) \cdot \mathbf{u}(\mathrm{t})$

(Similar to p. 839 \#19-20)

$$
\begin{aligned}
\mathbf{r}(t) & =(5 t) \mathbf{i}+\frac{t}{4} \mathbf{j}-5 \mathbf{k} \\
\mathbf{u}(t) & =\left(9 t^{3}\right) \mathbf{i}+t \mathbf{j}-7 t \mathbf{k}
\end{aligned}
$$

5. Find $\|r(t)\|$
(Similar to p. 839 \#13-14)

$$
\mathbf{r}(t)=3 \sqrt{t} \mathbf{i}+t \mathbf{j}-e^{t} \mathbf{k}
$$

6. Represent the line segment from P to Q by a vector-valued function and by a set of parametric equations (Similar to p.839 \#15-18)

$$
P(2,1,-3) \quad Q(4,7,-5)
$$

8. Match the equation with its graph.
(Similar to p.839 \#21-24)

$$
\begin{gathered}
\mathbf{r}(t)=\cos (3 t) \mathbf{i}+\sin (3 t) \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq \pi \\
\mathbf{r}(t)=\ln (t) \mathbf{i}+2 t \mathbf{j}+t \mathbf{k},
\end{gathered} 0 \leq t \leq 3 \mathrm{l},
$$

9. Sketch the curve represented by the vector-valued function and give the orientation of the curve (Similar to p.840 \#27-42)

$$
\mathbf{r}(t)=t^{2} \mathbf{i}+(t+3) \mathbf{j}
$$

10. Sketch the curve represented by the vector-valued function and give the orientation of the curve (Similar to p.840 \#27-42)

$$
\mathbf{r}(\theta)=(2 \cos \theta) \mathbf{i}+(5 \sin \theta) \mathbf{j}
$$

11. Sketch the curve represented by the vector-valued function and give the orientation of the curve
(Similar to p.840 \#27-42)

$$
\mathbf{r}(t)=(\mathrm{t}+2) \mathbf{i}+(t-1) \mathbf{j}+(2 \mathrm{t}) \mathbf{k}
$$

12. Sketch the curve represented by the vector-valued function and give the orientation of the curve (Similar to p.840 \#27-42)

$$
\mathbf{r}(t)=t \mathbf{i}+2 \sin (\mathrm{t}) \mathbf{j}+3 \cos (\mathrm{t}) \mathbf{k}
$$

13. Sketch the space curve represented by the intersection of the surfaces. Then represent the curve by a vector valued function using the given parameter (Similar to p.840 \#59-66)

Surfaces	Parameter
$x^{2}+y^{2}+z^{2}=10$,	$\mathrm{x}=2+\sin (\mathrm{t})$
$x+z=4$	

$x^{2}+y^{2}+z^{2}=10, \quad x=2+\sin (\mathrm{t})$

$$
x+z=4
$$

14. Find the limit (if it exists)
(Similar to p. 840 \#69-74)

$$
\lim _{t \rightarrow \pi}\left(\sec (t) \mathbf{i}+\tan (t) \mathbf{j}-t^{2} \mathbf{k}\right)
$$

15. Find the limit (if it exists) (Similar to p. 840 \#69-74)

$$
\lim _{t \rightarrow 0}\left(\frac{\tan (t)}{t} \mathbf{i}-e^{t} \mathbf{j}-3 t \mathbf{k}\right)
$$

16. Determine the interval(s) on which the vector-valued function is continuous
(Similar to p.841 \#75-80)

$$
\mathbf{r}(t)=t^{2} \mathbf{i}+\frac{2}{t-3} \mathbf{j}
$$

