Velocity and Acceleration

1. The position vector r describes the path of an object moving in the xy-plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point (Similar to p.856 \#1-10)

$$
\begin{array}{l|l}
\hline \text { Position Function } & \text { Point } \\
\hline \mathbf{r}(t)=t^{2} \mathbf{i}+5 t \mathbf{j} & (1,2) \\
\hline
\end{array}
$$

Definitions of Velocity and Acceleration

If x and y are twice-differentiable functions of t, and r is a vector-valued function given by $r(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ (aka Position Vector), then:

Velocity $=\mathbf{v}(\mathrm{t})=\mathrm{r}^{\prime}(\mathrm{t})=\mathrm{x}^{\prime}(\mathrm{t}) \mathbf{i}+\mathrm{y}^{\prime}(\mathrm{t}) \mathbf{j}$
Acceleration $=\mathbf{a}(\mathrm{t})=\mathrm{r}^{\prime \prime}(\mathrm{t})=\mathrm{x}^{\prime \prime}(\mathrm{t}) \mathbf{i}+\mathrm{y}^{\prime \prime}(\mathrm{t}) \mathbf{j}$
Speed $=\|\mathbf{v}(t)\|=\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}$
2. The position vector r describes the path of an object moving in the xy-plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point
(Similar to p. 856 \#1-10) NEXT TIME

$$
\begin{array}{l|c}
\hline \text { Position Function } & \text { Point } \\
\hline \mathbf{r}(t)=t^{2} \mathbf{i}+t^{4} \mathbf{j} & (4,16) \\
\hline
\end{array}
$$

3. The position vector r describes the path of an object moving in the xy-plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point
(Similar to p. 856 \#1-10)

4. The position vector r describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object
(Similar to p. 856 \#11-20)

$$
\boldsymbol{r}(t)=4 t \mathbf{i}+2 t \mathbf{j}+t \mathbf{k}
$$

5. The position vector r describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object (Similar to p. 856 \#11-20)

$$
\boldsymbol{r}(t)=\mathrm{t}^{3} \mathbf{i}+\mathrm{t}^{2} \mathbf{j}+5 t \mathbf{k}
$$

6. The position vector r describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object
(Similar to p. 856 \#11-20)

$$
\boldsymbol{r}(t)=<\cos (\mathrm{t}), \sin (\mathrm{t}), 5 \mathrm{t}>
$$

7. Use the given acceleration function to find the velocity and position vectors. Then find the position at time $t=2$
(Similar to p.856 \#23-28)

$$
\begin{gathered}
\boldsymbol{a}(t)=3 \mathbf{i}+2 \mathbf{j}-5 \mathbf{k} \\
\mathbf{v}(0)=0, \mathbf{r}(0)=\mathbf{0}
\end{gathered}
$$

9. Use the given acceleration function to find

Position Function for a Projectile

 the velocity and position vectors. Then find the position at time $t=5 \mathrm{pi} / 3$(Similar to p.856 \#23-28)

$$
\begin{gathered}
\boldsymbol{a}(t)=\cos (\mathrm{t}) \mathbf{i}-2 \sin (\mathrm{t}) \mathbf{j} \\
\mathrm{v}(0)=3 \mathbf{i}+2 \mathbf{j}, \mathrm{r}(0)=2 \mathbf{i}
\end{gathered}
$$

8. Use the given acceleration function to find the velocity and position vectors. Then find the position at time $\mathrm{t}=2$
(Similar to p.856 \#23-28)

$$
\begin{gathered}
\boldsymbol{a}(t)=2 \mathrm{t} \mathbf{j}-3 \mathrm{t} \mathbf{k} \\
\mathbf{v}(0)=2 \mathrm{j}, \mathrm{r}(0)=4 \mathrm{k}
\end{gathered}
$$

Neglecting air resistance, the path of a projectile launched form an initial height h with initial speed v_{0}, and angle of elevation θ is described by the vector function
$\mathbf{r}(t)=\left(v_{o} \cos \theta\right) t \mathbf{i}+\left[h+\left(v_{o} \sin \theta\right) t-\frac{1}{2} g t^{2}\right] \mathbf{j}$ where g is the acceleration due to gravity (32 feet per second)
10. Use the model for projectile motion, assuming there is no air resistance
(Similar to p. 856 \#29-44)
Find the vector-valued function for the path of a projectile launched at a height of 20 feet above the ground with an initial velocity of 100 feet per second and at an angle of 45° above the horizontal.
11. Use the model for projectile motion, assuming there is no air resistance
(Similar to p. 856 \#29-44)
A baseball, hit 5 feet above the ground, leaves the bat at an angle of 30° and is caught by an outfielder 5 feet above the ground and 200 feet from home plate. What is the initial speed of the ball, and how high does it rise?

